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1 Introduction to SAT

The boolean satisfiability (SAT) problem consists of answering the following questions:
1. Is a given proposition (or formula) S satisfiable? That is, is it possible to find truth assign-

ments for the variables (or atomic propositions) in S such that S evaluates to true? If the
answer to this question is no, we call S unsatisfiable.

2. Is a given proposition S a tautology? That is, is every possible combination of 2n truth
assignments a model for S? (A model is any satisfying truth assignment.) This is the same as
asking if there does not exist a truth assignment for which S evaluates to false. The simplest
tautology would be (x1 ∨ x̄1).

3. Does a proposition S1 imply (→) another proposition S2 defined on the same set of variables?
That is, is every model of S1 a model of S2 without explicitly solving for all the models of S1

(if this is even possible)?
One way to answer all three questions is to enumerate all 2n possible truth assignments, where

n is the number of atomic propositions, and to run them through the formula. This number
of possible combinations unfortunately grows far too quickly (exponentially) with the number of
atomic propositions and becomes unmanageable for even as few as 30 atomic propositions (1 billion
possible truth combinations). The problems we are likely targeting have from 1000 to 10,000 atomic
propositions in them.

The implication question posed in q. 3 can be rewritten as a satisfiability problem similar to
the one posed in q. 1 since asking if S1 → S2 is the same as asking if (S̄1 ∨ S2) is a tautology.
Conversely, every proposition S in a satisfiability problem similar to the one posed in q. 1 can
be written as an implication problem like the one posed in q. 3 by simply solving (T → S) since
this reduces to solving (F ∨ S) which is the same as (S). The disjunction of a proposition with
another proposition that is always unsatisfiable is pointless and can be simplified by dropping the
unsatisfiable proposition. Thus questions 1 and 3 are equivalent and are therefore equally “hard”.

Question 2 is a little bit “harder” in an algorithmic sense since one would have to explore a
significantly larger feasible set that contains every single possible model which can be as large as
2n, n being the number of atomic propositions, if the proposition is indeed a tautology.

There is a simple equivalence between all three problems. The following statements are equiv-
alent

1. S1 implies S2.
2. (S̄1 ∨ S2) is a tautology.
3. (S1 ∧ S̄2) is unsatisfiable.
since every model of S1 is also a model of S2. We showed above that statements 1 and 3 are the

same. But questions 2 and 3 are simply negations of each other and are therefore the same. Thus
all three statements above are equivalent and a simple equivalence between all three problems has
been demonstrated.

2 Special Cases in Propositional Logic

2.1 Basic Concepts

Conjunction in logic is a compound proposition that is true if and only if all of its component
propositions are true. Conjunctions are represented by the symbol “∧” and correspond to a logical
AND. Disjunction in logic is a compound proposition that is true if and only if at least one of its
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component propositions is true. Disjunctions are represented by the symbol “∨” and correspond
to a logical OR. Negations are represented by a “bar” on top of the formula or literal such as S̄ or
x̄ and correspond to a logical NOT.

We therefore have the following simple rules:
1. (S1 ∧ S2) is T if and only if both S1 and S2 are T.
2. (S1 ∨ S2) is F if and only if both S1 and S2 are F.
3. S is T if and only if S̄ is F.
Basic properties and laws of propositions may be applied without affecting the proposition’s

models (¬S is alternate notation for S̄):
1. Involutory property of negation: ¬¬S = S
2. De Morgan’s Laws:

¬(S1 ∨ S2)⇔ (S̄1 ∧ S̄2)

¬(S1 ∧ S2)⇔ (S̄1 ∨ S̄2)

3. Distributive Law: S1 ∨ (S2 ∧ S3)⇔ (S1 ∨ S2) ∧ (S1 ∨ S3)
A satisfiability problem posed as a propositional formula is said to be in conjunctive normal

form (CNF) if it is a conjunction of one or more clauses, each of which is a disjunction of one or
more (possibly negated) literals.

Theorem Any formula in propositional logic is equivalent to a CNF formula whose length is
linearly related to the length of the original formula.

That there exist rewriting techniques leading to CNF representations that are polynomially
bounded in length was first noted by Tseitin as early as 1968.

Consider the worst-case scenario which is rewriting a formula in disjunctive normal form (DNF)
as CNF. A DNF formula is a disjunction of terms, each of which is a conjunction of literals. An
example of a DNF formula is:

(x1 ∧ x2) ∨ (x3 ∧ x4) ∨ (x5 ∧ x6) ∨ (x7 ∧ x8)

We introduce new propositions x12, x34, x56, x78 that represent each conjunction in parenthesis.
For each x2j−1,2j (j = 1, 2, 3, 4) we write the clauses (x̄2j−1,2j ∨ x2j−1) and (x̄2j−1,2j ∨ x2j)

We also need one additional clause to knit the four subformulas together.

(x12 ∨ x34 ∨ x56 ∨ x78)

These clauses put together represent the DNF formula above. It is easy to see that this technique
results in a CNF formula with three times the original number of atomic propositions, and twice
the original number of clauses plus one additional clause to knit the subformulas together. Both
the number of atomic propositions and the number of clauses are therefore linear in growth. 2

2.1.1 Unit Resolution

Consider the following example:

(x1) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x̄1 ∨ x̄4) ∧ (x̄2 ∨ x3 ∨ x5)

It is clear that if this formula is to hold true, one would have to set x1 to 1 since it stands alone
as a unit positive clause. We therefore set x1 to 1 and remove it from the formula. In addition,
we also remove all other clauses where x1 is present as a positive literal since these clauses will be
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automatically satisfied. Furthermore, we get rid of all occurrences of x̄1 in any of the remaining
clauses since this literal will always be false and a disjunction with something that is always false
is pointless.

We are now left with

(x2 ∨ x̄3 ∨ x4) ∧ (x̄4) ∧ (x̄2 ∨ x3 ∨ x5)

We now repeat the process with x̄4 to obtain the reduced form

(x2 ∨ x̄3) ∧ (x̄2 ∨ x3 ∨ x5)

We now stop as we cannot apply the same process once more due to a lack of unit clauses.
This procedure is referred to as unit resolution.

1. If the unit resolution procedure applied to S returns an empty formula then unit resolution
has succeeded in finding a satisfying truth assignment for S.

2. On the other hand, if the procedure returns S = {}, that is the empty clause, then S is
unsatisfiable since the only way to obtain an empty clause is to have something of the form
(xi) ∧ (x̄i) to begin with.

2.2 Integer Linear Programming Models

Integer linear programming deals with linear programming problems where one or more variables
are restricted to taking integer values. By introducing suitable bounds on the integer variables
(which are expressed as linear inequalities), it is possible to restrict variables to only take values
in the nonnegative integers or even just values of 0 or 1. It is the latter “boolean” restriction that
captures the semantics of propositional logic since the values of 0 and 1 may be naturally associated
with False and True.

The idea here is to formulate satisfiability of CNF formulas as integer linear programming
problems with clauses represented by constraints and atomic propositions represented by 0-1 binary
variables.

In general, integer linear programming (ILP) problems may be solved by solving the linear
relaxation and then applying a branch-and-bound procedure. But since all of our variables are
not only integer but also binary, we may alternatively apply special-case algorithms such as Balas’
additive algorithm to solve the binary ILP problem. We may stop these algorithms as soon as a
feasible integer solution is found, since we are not optimizing anything here.

Consider, for example, the single clause x2 ∨ x̄3 ∨ x4. This clause may be represented by the
inequality x2 + (1− x3) + x4 ≥ 1 with x2, x3 and x4 restricted to boolean values of 0 and 1. Thus
the SAT problem

(x1) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x̄1 ∨ x̄4) ∧ (x̄2 ∨ x3 ∨ x5) (1)

may be represented by the following set of constraints, one for each clause:

x1 ≥ 1
x2 + (1− x3) + x4 ≥ 1
(1− x1) + (1− x4) ≥ 1
(1− x2) + x3 + x5 ≥ 1

x1, · · · , x5 = 0 or 1
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Moving all constants to the right hand side, we get the following clausal form:

x1 ≥ 1
x2 − x3 + x4 ≥ 0
−x1 − x4 ≥ −1 (2)

−x2 + x3 + x5 ≥ 0
x1, · · · , x5 = 0 or 1

In general, satisfiability in propositional logic is equivalent to the solvability of the linear system
Ax ≥ b, x ∈ {0, 1}n where the inequalities Aix ≥ bi are clausal.

A few quick notes and observations:
1. A is an m × n matrix of 0s and ±1s, where m is the number of clauses and n is the total

number of atomic propositions in the formula. Aij is +1 if xj is positive in clause i, -1 if
negated, and 0 otherwise.

2. bi = (1 – # of -1s in row i of matrix A). b can therefore be calculated given a matrix A of 0s
and ±1s.

3. The geometric interpretation of a SAT problem reduces to looking for an extreme point of the
unit hypercube in <n that is contained in all the half-spaces defined by the clausal inequalities.

We may verify the involutary property of the negation operator “¬” and De Morgan’s laws
stated previously by looking at their corresponding linear integer constraint representations:

1. (¬¬x1)⇔ 1− (1− x1) ≥ 1⇔ x1 ≥ 1⇔ (x1)
2. ¬(x1 ∨ x2)⇔ 1− (x1 + x2) ≥ 1⇔ x1 + x2 ≤ 0 which is equivalent to the set of constraints

x1 ≤ 0
x2 ≤ 0

since if any one of x1 or x2 (say x1) were allowed to be strictly positive, it would take the
value of 1 (recall the additional constraint xi ∈ {0, 1}) and so x2 would need to be at most
-1 to satisfy x1 + x2 ≤ 0 which is of course not possible. We reach a contradiction and hence
conclude that both x1 and x2 need to be at most 0 if their sum is to be at most 0.

One may now proceed to verify the other half of De Morgan’s laws and the distributive property
in a similar fashion.

2.2.1 Optimization and Inference

We have already seen that the intersection of clausal half-spaces defines a convex polyhedron. If
the additional box constraints 0 ≤ xj ≤ 1 are added, we obtain a bounded polyhedron also known as
a polytope. Satisfiability now essentially implies finding a feasible integer point inside this polytope.

We may check to see if an integer linear programming problem is feasible or not by using a
2-phase method, that is, by adding an artificial variable and then trying to optimize the artificial
variable to 0. Thus the satisfiability of (1) may be tested by checking the feasibility of (2) which is
in turn done by solving the following optimization problem:
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MIN x0

s.t. x0 + x1 ≥ 1
x0 + x2 − x3 + x4 ≥ 0
x0 − x1 − x4 ≥ −1
x0 − x2 + x3 + x5 ≥ 0

xj ∈ {0, 1}, j = 0, 1 . . . 5

The above optimization problem is always feasible with x0 = 1 and all other xj = 0 and an
optimal value of x0 = 0. Thus, the original formula is satisfiable if and only if the optimization
problem above is solved with x0 at 0. When x0 = 0, the x0’s in the constraints drop out and we
are left with a feasible solution to the original set of constraints put down in (2).

The above optimization problem is called a phase 1 construction which takes the general form

MIN x0

s.t. x0e+Ax ≥ b
xj ∈ {0, 1}, j = 0, 1 . . . n

where Ax ≥ b represents the original clausal inequalities and e is a column of ones.
We therefore now have a way of checking to see if a given proposition is satisfiable or not. How

about the inference problems in the form of implications? That is, does a formula S1 imply another
formula S2 (S1 → S2)? We have already seen that the problem (S1 → S2) is identical to asking if
(S̄1 ∨ S2) is a tautology.

To begin with, assume S1 is CNF and S2 is given by a single clause C. The optimization model
is given by:

MIN cx
s.t. Ax ≥ b

x ∈ {0, 1}n

where c is the incidence vector of clause C and Ax ≥ b are the clausal inequalities representing S1.
The incidence vector c is constructed by assigning a value of +1 to ci if the literal xi is positive in
C, -1 if negated, and 0 otherwise.

If this optimization yields a minimum value of 1 - n(C) (1 minus the number of negative literals
in C) or larger, S1 implies S2. Otherwise the implication does not hold.

Why is this the case?
Suppose that there exists a model that satisfies both S1 and S2, then we are guaranteed a

feasible solution for the set of constraints

Ax ≥ b
cx ≥ 1− n(C)

x ∈ {0, 1}n

Now we take the left-hand-side of the second constraint and move it to the objective function
and then try to minimize it. Since Ax ≥ b still remains as a constraint (note that we do not
associate any artificial variables with this constraint), we are ensured that we are only working
with models of S1 (since Ax ≥ b are the clausal inequalities representing S1).
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The question is whether all these models of S1 are also models of S2 whose inequality is repre-
sented by cx ≥ 1−n(C). If all models of S1 are also models of S2, cx would always remain greater
than 1−n(C) (meaning that cx ≥ 1−n(C) always remains feasible when Ax ≥ b is) for if there was
even one model of S1 that was not a model of S2 then the minimization would pick this up to yield
an objective value cx that is strictly less than 1− n(C) which causes the inequality cx ≥ 1− n(C)
representing S2 to be violated.

Thus S1 implies S2 if and only if the optimal minimum value is greater than or equal to 1−n(C).
Now, what if S2 is given by more than just a clause? The idea is here is to show that (S1 ∧ S̄2)

is unsatisfiable as discussed in Section 1.
Consider the situation

(i) S1, CNF, with clausal inequalities Ax ≥ b
(ii) S̄2, CNF, with clausal inequalities Bx ≥ d

To test if S2 is logically implied by S1 we solve

MIN x0

s.t. x0e+Bx ≥ d (corresponds to S̄2)
Ax ≥ b (corresponds to S1)
x ∈ {0, 1}n

If this problem is optimized at 0, then both S1 and S̄2 are true which means there exists a
model of S1 that is not a model of S2 indicating that S1 does not imply S2. Thus S1 implies S2 if
and only if the minimum value of x0 is 1, for if x0 were allowed to be 0, the minimization would
pick it up. The fact that the minimization does not pick it up indicates that there is no model of
S1 that is not also a model of S2.

Once again, we do not associate an artificial x0 with the constraint Ax ≥ b since we assume
that S1 is satisfiable. If S1 had no models to begin with, i.e. if it were unsatisfiable, the implication
S1 → S2 always holds.

To conclude, we can always easily rewrite inference problems in propositional logic as integer
linear programming (ILP) problems. But in general, ILP problems are just as hard (if not harder
in particular instances) to solve as the satisfiability problem itself. It seems then that we have
taken a hard problem—the one of satisfiability—and made it even harder by converting it into
an ILP problem. However in practice, special mathematical structure makes many ILP problems
easy to solve and this happens to be true of many inference problems in propositional logic. We
now proceed to investigate special mathematical structure within an ILP representation of SAT by
looking at its corresponding linear programming (LP) relaxation.

2.2.2 The Linear Programming Relaxation

The linear programming relaxation consists of taking the ILP problem formulated above and re-
laxing the integer (binary) constraints xj ∈ {0, 1} to the weaker condition 0 ≤ xj ≤ 1.

The idea is to analyze the properties of this linear programming relaxation to obtain ideas on
computational strategies for solving the integer model. It turns out that the linear programming
relaxation retains sufficient structure to be a useful representation of the original inference problem.
The relaxation provides a means of understanding special structures in propositions that permit
efficient solvability of inference.

It is interesting to observe that the actions performed by the unit resolution procedure discussed
in Section 2.1.1 earlier are implicitly encoded into the linear inequalities of the linear programming
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relaxation. For example, a unit clause (xj) is given by xj ≥ 1. However, there is an explicit upper
bound xj ≤ 1 on xj . Thus xj is fixed to have a value of exactly 1 (as fixed by unit resolution).
Similarly, a unit clause with a negated literal (x̄k) is given by the linear inequality −xk ≥ 0, but
there exists a lower bound on xk given by xk ≥ 0 which fixes the variable xk to have a value
0. Also if at any stage of unit resolution two conflicting unit clauses (xj) and (x̄j) are obtained,
the corresponding implied inequalities are xj ≥ 1 and −xj ≥ 0, which are in conflict. The linear
program is inconsistent and therefore infeasible in such a situation.

Lemma The linear programming relaxation of a unit clause free CNF formula is always feasible
with the trivial fractional solution xj = 1

2 for all j.
It is easy to convince ourselves that the lemma is indeed true. If the clause contained (two or

more) positive-only literals, the left hand side of the corresponding constraint would always add
up to 1 or more. For every additional negated literal that is added, the left hand side decreases by
a 1

2 , but the right hand side decreases by 1, a larger quantity, thereby preserving the inequality. If
the clause contained one posited and one negated literal, the left hand side would sum up to 0 and
so would the right hand side.

The lemma implies the following theorem:
Theorem A proposition S has a unit refutation (unsatisfiability of S proved by unit resolution)

if and only if the linear programming relaxation of S is infeasible.
For satisfiable propositions, the power of the linear programming relaxation exceeds that of unit

resolution. This is because for satisfiable propositions we may get lucky while solving the linear
programming relaxation and hit on an integer solution and thus prove satisfiability. The statement
implies that there might exist a special class of satisfiable propositions for which unit resolution
fails to come up with a solution (perhaps because we’re left with a unit clause free formula at some
point), but a feasible solution for the linear programming relaxation happens to be integer.

One such class of propositions are called balanced propositions. These are propositions whose
relaxations are integral polytopes. Using a simplex method to solve the relaxation will guarantee us
a vertex feasible solution that is integer and hence prove satisfiability. However, if the proposition
itself has no unit clauses, unit resolution would not achieve anything.

For refutable propositions on the other hand, the power of unit resolution and the relaxation
are identical. That is, if unit resolution can refute a proposition, then so can solving the linear
programming relaxation and vice versa. Inversely, if unit resolution fails to refute a refutable
proposition, then the linear programming relaxation also has no hope of refuting it and vice versa.

2.3 Horn Polytopes

We now proceed to analyze special classes of propositions by looking at properties of their linear
relaxations and attempting to derive insight into solving their corresponding ILP representations
efficiently. One such special class of propositions are Horn propositions.

A Horn rule has either no atoms or a single atom in its consequent. A Horn clause must
therefore contain at most one positive literal since consequents of a rule correspond to positive
literals inside a clause. A Horn clause system is a system in which all clauses are Horn.

2.3.1 Horn Resolution

Horn systems are highly structured propositions where satisfiability can be solved in linear time
(in the number of literals) using a restricted form of unit resolution. The restricted form of unit
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resolution resolves only unit positive clauses since a Horn clause system with no unit positive clauses
is trivially satisfiable by assigning 0 to the rest of the literals. This is because each clause must
then have at least one negated literal, for none of the clauses may contain a single positive literal
(it would then be unit positive) or two or more positive literals (it would then be non-Horn). Thus
assigning 0 to all literals will ensure all clauses are satisfied simultaneously.

The restricted form of unit resolution can therefore completely solve the satisfiability problem
on a Horn system:

1. Look for only unit positive clauses and apply unit resolution on them.
2. If no unit positive clauses are found, assign 0 to all literals in the formula, declare the propo-

sition as satisfiable and stop.
3. If an empty clause is obtained, the proposition is unsatisfiable. Stop.
4. If an empty formula is obtained, unit resolution has succeeded in finding a satisfying truth

assignment. Stop.
5. Repeat step 1 using the resulting simplified formula.
In doing so, we take advantage of a basic property that Horn systems are closed under the

deletion of literals and clauses and therefore applying unit resolution on a Horn system results in
a new system that is also Horn.

Consider the Horn clause system (x3) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3). Applying unit resolution once
yields (x1 ∨ x̄2)∧ (x̄1) with x3 set to 1. In the usual case, we might re-apply unit resolution on the
unit clause (x̄1), but because this system is Horn and there are no other unit positive clauses, we
instead assign 0 to both x1 and x2 and declare the proposition as satisfiable.

Theorem A satisfiable Horn proposition has a unique minimal model. A unique minimal model
for a satisfiable proposition S is achieved by:

(i) Setting all atoms to T only for those atoms that must be true in all models of S.
(ii) Setting everything else to F.

The restricted form of unit resolution satisfies (i). The minimal model tries to minimize the
number of T’s assigned to the variables, or equivalently, tries to maximize the number of F’s
assigned.

The minimal model is unique because of the following argument. Assume there exists two
minimal models T1 and T2 different from each other. If an atom set to T in T1 is set to F in T2 and
T1 is a model, then T2 cannot be a model because (i) sets only those atoms that must be true in
all models to T since an atom is set to T only when it shows up as a unit positive clause (positive
singleton).

Thus if there exists two minimal models T1 and T2, they must be identical to each other. 2

Even if there exists more than one unit positive clause to resolve on, the procedure will yield
the same minimal model regardless of which clause unit resolution picks to resolve on.

The above theorem also follows from a very strong closure property satisfied by the set of models
of a Horn proposition.

Lemma If T1 and T2 are models for a Horn proposition S, then so is T1 ∧ T2. (An atom is set
to true in T1 ∧ T2 if and only if it is true in both T1 and T2.)

Proof: Assume T1 and T2 are models for a Horn proposition S, but T1 ∧ T2 isn’t.
1. If a clause C is negative (meaning no positive literals), then T1 ∧ T2 must set all literals in
C to T since setting even one literal to F will satisfy the clause since all literals are negated.
But the only way all literals can be set to T is if both T1 and T2 set all corresponding literals
to be T which causes both T1 and T2 to falsify C since all literals are negated. Therefore
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neither T1 or T2 can be models and this is a contradiction.
2. If C has a single positive literal xk then at least one of T1 or T2 (say T1) must set xk to F,

for otherwise T1 ∧ T2 would satisfy C. But since T1 is a model, there must be at least one
negated literal x̄j in C (no further positive literals are allowed since C is Horn) set to F, but
this would automatically make the corresponding negated literal in T1 ∧ T2 F causing C to
be satisfied. Again a contradiction.

This concludes that models of Horn propositions are closed under the “∧” operation. 2

Definition Two propositions S1 and S2 are said to be equivalent if they are built on the same
ground set of atoms and if they have the same set of models.

It is easy to see that two propositions are equivalent if and only if S1 implies S2 and S2 implies
S1. We shall use the notation S1 ⇔ S2 for equivalent propositions S1 and S2.

Definition A proposition S is called H-equivalent (or Horn equivalent) if it is equivalent to
some Horn proposition.

So if S is Horn equivalent to some Horn proposition H, the above lemma suggests that the set
of models of H and hence of S is closed under the ∧ operation. Now suppose we have a non-Horn
proposition S that is closed under the ∧ operation, does it suggest that there exists some Horn
proposition H to which S is H-equivalent? It turns out that this is indeed the case because of the
following reasoning.

If S is non-Horn, it must contain a clause C of the form xk ∨ xl ∨D, where D is a disjunction
of zero or more literals. If every model of S satisfies xk ∨D we can delete xl from C and obtain
an equivalent proposition. Likewise if xl ∨D is satisfied by all models, we delete xk from C. We
continue this process, gradually deleting the excess positive literals from clauses in S, until we
obtain a Horn proposition equivalent to S or we are unable to apply the deletion criteria. If we
are unable to apply the deletion criteria it is because we have two models T1 and T2 and a clause
xk ∨ xl ∨D such that

T1(xk) = True, T1(xl) = T1(D) = False

T2(xl) = True, T2(xk) = T2(D) = False

But then T1 ∧ T2 cannot satisfy C, which contradicts our assumption that the models of S are
closed under the ∧ operation. Therefore the deletion process does not get stuck and S is reduced
to an equivalent Horn formula.

We thus have the following result:
Theorem The set of models of a proposition is closed under the “∧” operation if and only if

the proposition is H-equivalent.

2.3.2 The Integer Least Element of a Horn Polytope

The rich syntactic and semantic structure of Horn propositions is revealed as special integrality
properties of the LP relaxation. This helps shape characteristics of the polytopes formed from the
linear programming relaxation of Horn propositions, that is, Horn polytopes.

Definition A least element of a polyhedron P is a point xmin ∈ P , all of whose individual
components are no larger than the corresponding components of any x in P . In mathematical
terms, xmin is a least element if xmin ≤ x ∀ x ∈ P .

Of course, not every convex polyhedron has a least element. In the two-dimensional case, the
least element, assuming one exists, will be somewhere at the bottom-left of P . If the bottom-most
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left-most point is not a vertex of the polyhedron, it is clear that it cannot possibly be a least
element. It is also clear that if a least element exists, then it must be unique since if there exists
a second least element different from the first, it would automatically imply one of the two least
elements is not least anymore.

Theorem A convex polyhedron defined by a system of linear inequalities

P = { x | Ax ≥ b, x ≥ 0}

has an integral least element if the following conditions are met:
1. b must be integral
2. b must be such that P is non-empty
3. each row of A must have at most one positive component
4. all positive components of A must be equal to 1
If b ≤ 0 it is evident that P contains a least element xmin = 0. If b > 0, [1] (p. 35) proposes a

technique to obtain the least element of P using a lower bound escalation scheme which performs
a sequence of translations until the least element is resolved.

Since each inequality associated with a Horn clause will have at most one positive coefficient
on the left-hand side and further all positive left-hand-side coefficients will be equal to 1, we are
assured the existence of an integral least element for all Horn polytopes generated by satisfiable
Horn propositions. Further, this least element is the incidence vector of the unique minimum model
of the proposition found by Horn resolution since both methods try to maximize the number of F’s
(0s) assigned to the variables.

It is important to note that although polytopes generated by satisfiable Horn propositions are
guaranteed to have an integral least element, the polytope need not itself be integral.

Thus, one can find the integral least element by optimization since we are guaranteed that for
satisfiable Horn propositions, a least element exists and this least element needs to be a vertex
of the polytope from the way a least element was defined. Hence a simplex algorithm that hops
from vertex to vertex will eventually hit upon this integral least element which corresponds to the
unique minimal model, thus proving feasibility of the ILP formulation, and hence satisfiability.

Summarizing this idea, for any vector c ∈ <, all of whose components are positive (the simplest
would be a vector of all ones), the linear program

min { cTx | x ∈ Horn Polytope}

is optimized uniquely by the integral least element. Of course, this optimization model is nowhere
as efficient as Horn resolution in proving satisfiability. However, the dual of the optimization model
above may provide additional mathematical insight to give us some idea for polytopes generated
from unsatisfiable Horn propositions.

2.3.3 Dual Integrality of Horn Polytopes

The dual of the integer linear representation of a satisfiability problem has an interesting interpre-
tation discovered by Jeroslow and Wang [2]. When the clauses are unsatisfiable, the values of the
dual variables are proportional to the number of times the corresponding clauses serve as premises
in a refutation.

Any satisfiability problem can be written as the following 0–1 problem:
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MIN x0

s.t. x0e+Ax ≥ a
xj ∈ {0, 1}, j = 0, 1, . . . , n

The linear relaxation of this problem is:

MIN x0

s.t. x0e+Ax ≥ a (u)
−x ≥ −e (v)
x ≥ 0

and its dual is:

MAX uTa− eT v
s.t. uT e ≤ 1

uA− v ≤ 0
−u ≤ 0
−v ≤ 0

The dual solution implicitly indicates how many times each clause is used in a resolution proof
of unsatisfiability.

Theorem Let Ax ≥ a represent an unsatisfiable set of Horn clauses. Then if (u, v) is any
optimal extreme point solution of the dual, there is an integer N and a refutation proof of unsatis-
fiability such that Nui is the number of times that each clause i is used to obtain the empty clause
in the proof.

For example, consider the following unsatisfiable Horn clauses:

x1

x̄1 ∨ x2

x̄2

We add an artificial variable x0 to check satisfiability:

MIN x0

s.t. x0 + x1 ≥ 1 (u1)
x0 − x1 + x2 ≥ 0 (u2)
x0 − x2 ≥ 0 (u3)

The optimal solution to the primal is x̄ = (x0, x1, x2) = (1
3 ,

2
3 ,

1
3) while the corresponding dual

solution is ū = (u1, u2, u3) = (1
3 ,

1
3 ,

1
3) which is non-integral. The theorem states that for some N ,

Nu gives the number of times each clause is used to obtain the empty clause. The refutation is
achieved by first resolving the first two clauses to obtain x2, and then resolving x2 with the third
clause to obtain the empty clause. So each clause is used once and N = 3.

Graphically speaking, let us construct a tree where each clause forms a root node. Any two
clauses that can be resolved to yield a third resolvent clause is drawn as a child. This process
is applied repeatedly until we are left with the null (empty) clause. Once this tree has been
constructed, each ui tells us how many paths there are to get from the ith clause to the null clause.

The ui’s may also be used to perform a simple sensitivity analysis. If a dual solution yields
each ui > 0, it means that in at least one proof of infeasibility, every clause is essential. Also, the
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Figure 1: A unit resolution proof of unsatisfiability (taken from [1], p. 40).

clauses i corresponding to larger ui’s might be said to be more “important”, in the sense that they
are used more often in the proof.

Unfortunately, the dual multipliers ui do not in general encode the structure of a refutation
proof and therefore do not represent a complete resolution proof. In other words, they don’t tell you
anything about how to construct the simplest refutation proof. For instance, the dual multipliers
ū = (1

3 ,
1
3 ,

1
3) obtained above are consistent with two refutations: one in which the first two clauses

are resolved first, and one in which the last two clauses are resolved first.

2.4 Quadratic and Renamable Horn Systems

Quadratic propositions allow no more than two literals per clause. This is a simple syntactic
restriction.

A proposition is called disguised or renamable Horn if it can be made Horn by complementing
some of the atomic propositions. The problem of recognizing a renamable Horn proposition reduces
to the satisfiability of a quadratic formula. This is described in Section 2.4.2. In effect, if we can
solve quadratic propositions in linear time, we may be able to solve a new class of non-Horn
propositions—propositions that can be made Horn by complementing some of the atoms—in linear
time as well.

2.4.1 Satisfiability of Quadratic Systems

As for Horn propositions, there is also a fast linear-time algorithm for checking satisfiability of
quadratic propositions. The algorithm uses an underlying graph representation to reveal either a
satisfying truth assignment if one exists, or the source of unsatisfiability if not.

A quadratic system is a CNF formula with no more than 2 literals per clause. For example,

Q = (x1 ∨ x̄3) ∧ (x̄1 ∨ x̄4) ∧ (x2) ∧ (x̄2 ∨ x̄4) ∨ (x3 ∨ x4)
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is a quadratic formula. Here, we describe a well-known linear-time satisfiability algorithm due to
Aspvall, Plass, and Tarjan. The implication graph G(Q) of a quadratic system Q is defined as
follows:

1. The vertices of the directed graph are the literals.
2. For each clause of the form (li ∨ lj) we create two directed edges (l̄i, lj) and (l̄j , li) in the

graph.
3. For each unit clause of the form (lk) we create one directed edge (l̄k, lk).
An edge of the form (li, lk) has the interpretation that in any satisfying truth assignment, if li

is set to T, then so is lj since at an edge of the form (li, lk) must have resulted from a clause of the
form (l̄i ∨ lk) which in order to be satisfied must have lk necessarily set to T if li is T. Therefore
for any atomic proposition xj , if we even have a directed path (and not just an edge) from xj to x̄j
and one from x̄j to xj , then Q is not satisfiable.

G(Q) also satisfies a duality property: if we were to reverse the directions of all arrows in the
directed graph and complement the names of all vertices, we would get back the same graph. This
is because of the way the literals are used to construct the graph. We should get the same graph
structure regardless of whether each clause is written as (li ∨ lj) or (lj ∨ li).

A sufficient and necessary condition for unsatisfiability of Q is the membership of a literal and its
complement in what is known as a strong component of G(Q). A strong component is a grouping of
the vertices of the graph such that within each component, one may get from one vertex to another
by strictly moving in the directions of the arrows. All strong components, in topological order, may
be identified in linear time by using a depth-first search technique. The topological order simply
means that for two strong components S1 and S2, if there is an edge from a vertex in S1 to a vertex
in S2, then S2 is a successor of S1, i.e. S1 > S2. Clearly, there couldn’t be an edge back from S2

to S1 since if this were the case, both S1 and S2 would belong to the same strong component from
its definition.

If a literal and its complement existed within the same strong component, it would mean
that there is a path comprising of an edge (or a sequence of edges) to get from the literal to its
complement and back. However, this would mean that we could satisfy both a literal and its
complement simultaneously which is not possible (recall that a connection from li to lj implies that
in a satisfying truth assignment, if li is set to T, then so is lj).

The duality property of the graph described above ensures that if S is a strong component of
G then so is its dual S̄. So if a strong component S satisfies S = S̄, then it must contain only
complementary pairs of literals. The converse is also true: any literal xj and its complement x̄j are
both in the same strong component S only if S = S̄.

The following procedure describes the linear-time satisfiability algorithm for quadratic systems:
1. Given a quadratic CNF formula Q, construct the implication graph G(Q) according to the

rules described above.
2. In reverse topological order, process the strong components S of G(Q) as follows. If S is

marked true or false, do nothing. If S is unmarked, then if S = S̄ stop (Q is unsatisfiable),
otherwise mark all literals in S true and all literals in S̄ false.

The correctness of the procedure follows from the fact that when the procedure concludes that
Q is satisfied, there is no directed path from any vertex marked true to a vertex marked false. This
follows from the interpretation of an edge of the form (li, lj), i.e. if li is set to T, then so must lj ,
meaning that all implications are satisfied.
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2.4.2 Recognizing Renamable Horn Systems

As described previously in Section 2.4, a CNF sentence is said to be renamable Horn if it can be
made Horn by complementing some of its atomic propositions. In order to do this, we need an
efficient linear-time algorithm to identify a renamable Horn system and disclose atomic propositions
that need to be complemented to reduce the system to a Horn formula.

Lewis showed that the disclosure of a renamable Horn formula is reducible to solving the satisfi-
ability of an auxiliary quadratic system. For example, consider the following non-Horn proposition:

S = (x1 ∨ x̄2 ∨ x̄3) ∧ (x2 ∨ x3) ∧ (x̄1) (3)

Let ui ∈ {T, F} denote the decision to complement the atomic letter xi (i.e. ui = T ) or leave
it alone (ui = F ). The conditions on the ui to ensure that S is renamable Horn are given by the
quadratic system

QS = (u1 ∨ ū2) ∧ (u1 ∨ ū3) ∧ (ū2 ∨ ū3) ∧ (u2 ∨ u3)

The first clause in QS (u1∨ ū2) states that if x2 is complemented, then so must x1 for otherwise
the first clause of S would contain two positive literals which is undesirable. In a similar vein, the
second clause in QS (u1 ∨ ū3) states that if x3 is complemented, then so must x1 for otherwise
the first clause of S would again contain two positive literals which is also undesirable. The third
clause of QS (ū2 ∨ ū3) states that x2 and x3 may not be both complemented, while the last clause
in QS (u2∨u3) denotes that at least one of either x2 or x3 must be complemented in order to make
the second clause of S Horn.

We thus conclude that S is renamable Horn if and only if QS is satisfiable. The ui’s then tell
us which xi’s need to be complemented. In this example, QS is satisfiable with u1 = u2 = T, u3 =
F and S is renamed to yield a Horn sentence:

S′ = (x̄1 ∨ x2 ∨ x̄3) ∧ (x̄2 ∨ x3) ∧ (x1) (4)

Note that unit clauses of S place no restrictions on the ui’s and that QS contains one clause
for every pair of literals in a non-unit clause of S. A non-unit clause in S containing m literals will
therefore generate

(
m
2

)
clauses in QS . Thus the length of Q grows quadratically with the length of

S. This is a problem.
To rectify this issue, Aspvall [3] used auxiliary variables to obtain a quadratic system linear in

the size of S. We will describe this technique in detail in the following subsection to see why it
works.

2.4.3 Linear-time Recognition of Renamable Horn Systems

We already have a method to generates a set of binary clauses that disclose whether a given system
is renamable Horn or not. However, the size of this system of binary clauses grows quadratically
with the number of literals in each clause in the original system. In order to avoid this difficulty,
Aspvall [3] reformulates the original system using auxiliary (dummy) variables and writes down a
secondary system Q̃(S) whose number of clauses grows linearly in the number of literals of each
clause in the original system. Aspvall’s reformulation is as follows:

(i) Given any clause C = (l1 ∨ l2 ∨ · · · ∨ lk) of S with k ≥ 2, we introduce (k − 1) auxiliary
variables wC1 , w

C
2 , · · · , wCk−1.
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(ii) The quadratic system corresponding to C is now

Q̃C = (l1 ∨ wC1 ) ∧

(
∧

2≤t≤k−1

(lt ∨ w̄Ct−1) ∧ (w̄Ct−1 ∨ wCt ) ∧ (lt ∨ wCt )) ∧

(lk ∨ w̄Ck−1)

(iii) The final proposition Q̃S thus becomes the disjunction of the Q̃C of every non-unit clause C:

Q̃S =
∧

Q̃C

C ∈ S

|C| ≥ 2

The length of Q̃S is given as follows: from the definition of Q̃C in (ii) we see that the total
length of Q̃C is 3 · max{0, k − 2} + 2 ≤ 3|C|, that is, bounded above by a constant multiple of
the length of C. Therefore, Q̃S is linear in the size of S, as required. What is left to show is that
the solution of the above construction with auxiliary variables is indeed a disclosure of the Horn
renamability of S.

Theorem S is renamable Horn if and only if Q̃(S) is satisfiable. If Q̃(S) is satisfiable by
(u∗, w∗) then a Horn renaming of S is given by the rule for all i that u∗i = 1 means xi is to be
complemented and u∗i = 0 means xi is not complemented.

Proof:
(i) Let li and lj be any two literals appearing in a clause C of S. Then from the definition of Q̃C

we know that the clauses

(li ∨ wCi ), (w̄Ci ∨ wCi+1), . . . , (w̄Cj−2 ∨ wCj−1), (lj ∨ w̄Cj−1)

are all contained in Q̃C . Hence the clause (li ∨ lj) is implied by the clauses in Q̃C , meaning
that the clause (li ∨ lj) can be obtained by resolving all of the above clauses pairwise from
left to right. Since the previous method (the method that grew quadratically in length) of
disclosing Horn renamability contained one clause for every pair of literals in a non-unit clause
of S, we have shown that this new construction involving auxiliary variables can be eventually
boiled down to the old construction by resolving appropriate clauses. Hence a satisfying truth
assignment (u∗, w∗) for Q̃S provides a Horn renaming for S.
For example, consider the simple clause C = (l1 ∨ l2 ∨ l3 ∨ l4 ∨ l5) of S. Q̃C for this clause is
then given by

(u1 ∨ w1) ∧
(u2 ∨ w̄1) ∧ (w̄1 ∨ w2) ∧ (u2 ∨ w2) ∧
(u3 ∨ w̄2) ∧ (w̄2 ∨ w3) ∧ (u3 ∨ w3) ∧ (5)
(u4 ∨ w̄3) ∧ (w̄3 ∨ w4) ∧ (u4 ∨ w4) ∧
(u5 ∨ w̄4)

The older construction would have
(
5
2

)
= 10 binary clauses, one for each pair of literals in

C. It is easy to see that all of these 10 clauses are simply an implication of the above Q̃C
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construction containing (3× 3) + 2 = 11 binary clauses. In other words, all 10 clauses may be
obtained by performing repeated resolution on appropriate clauses of Q̃C . For example, the
clause (u2∨u4) may be obtained by resolving (u2∨w2) with (w̄2∨w3) to obtain the resolvent
clause (u2 ∨w3). This resolvent clause is further resolved with (u4 ∨ w̄3) to obtain our desired
clause (u2 ∨ u4).

(ii) We now prove the converse of the theorem. Let us begin by assuming S is renamable Horn
and that we have a valid renaming given by the ui’s. We need to prove that Q̃S will be
satisfiable by finding an appropriate assignment for the wi’s.
Consider an arbitrary clause C = (li ∨ l2 ∨ · · · ∨ lk) of S. The truth assignment ū (vector
of ui’s) corresponding to the Horn renaming of S must make every ui (1 ≤ i ≤ k) true (i.e.
rename all li’s to l̄i) with the possible exception of one literal, say, lt. This is because once
the renaming has been performed, as per the Horn condition, only at most one literal may
remain positive. If all li’s are renamed, we can just assign F to all the wi’s to obtain a model
for Q̃S . It is the other case where lt isn’t renamed that we need to consider.
We now are now faced with the task to figure out what values to assign to the wi’s in order
to make Q̃S satisfiable when lt isn’t renamed. The required assignment is this: we assign
w̄Ci = F for all 1 ≤ i < t and w̄Ci = T for t ≤ i ≤ k − 1. The definition of Q̃C tell us that the
truth assignment (u∗, w∗) is indeed a model for Q̃C . And since the choice of C was arbitrary,
we conclude that the specified (u∗, w∗) makes Q̃S satisfiable.
We will illustrate why the above prescription for the assignment of the wi’s work by going
back to the simple example introduced in (i). If C = (l1 ∨ l2 ∨ l3 ∨ l4 ∨ l5), then let us suppose
all li’s (1 ≤ i ≤ 5) except l3 are renamed. This would make u1 = u2 = u4 = u5 = T and u3 =
F. This satisfies 4 out of the 8 clauses in (5). The remaining clauses are the ones with no ui’s
in them except for u3:

(w̄1 ∨ w2)
(u3 ∨ w̄2) ∧ (w̄2 ∨ w3) ∧ (u3 ∨ w3) ∧

(w̄3 ∨ w4)

Since u3 is F, we may remove those literals from the clauses as well:

(w̄1 ∨ w2)
(w̄2) ∧ (w̄2 ∨ w3) ∧ (w3)

(w̄3 ∨ w4)

It is now easy to see why we assign w̄Ci = F for all 1 ≤ i < t and w̄Ci = T for t ≤ i ≤ k − 1.
Here in this example, we are required to assign w2 = F and w3 = T since they appear as
unit clauses. w2 is wt−1 while w3 is wt. Setting w2 = F requires us to set w1 and everything
above to F as well because of the clause in the first line (w̄1 ∨ w2). This means that we have
to set all wi where 1 ≤ i < t to F. Similarly, setting w3 = T requires us to set w4 to T as
well because of the clause in the last row (w̄3 ∨w4). Setting w4 to T will require us to set w5

(not shown) to T in the clause (w̄4 ∨ w5) [again not shown] and so on. The effect cascades
downwards and requires us to set all wi where t ≤ i ≤ k − 1 to T. 2
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Let us go back to the S in the example given in (3). The renaming given in (4) gives us
ū = (u1, u2, u3) = (T, T, F ). The Q̃S corresponding to S is as follows:

(u1 ∨ wA1 ) ∧
(ū2 ∨ w̄A1 ) ∧ (w̄A1 ∨ wA2 ) ∧ (ū2 ∨ wA2 ) ∧
(ū3 ∨ w̄A2 )

∧
(u2 ∨ wB1 ) ∧

(u3 ∨ w̄B1 )

The first three lines correspond to the Q̃C of the first clause of S (clause A) while the last two
lines correspond to the Q̃C of the second clause of S (clause B).

We may re-write the first clause (x1 ∨ x̄2 ∨ x̄3) as (l1 ∨ l2 ∨ l3) by complementing x2 and x3.
This gives us a different ū. Call this ū′ = (T, F, T ). Since the F occurs in the second element in
ū′ (t = 2), we set wA1 = F and wA2 = T . Thus the solution (u∗, wA∗) = ((u1, u2, u3), (wA1 , w

A
2 )) =

((T, T, F ), (F, T )) is the solution obtained by applying the prescription described above. We can
check to see that this solution is indeed a model for the Q̃C corresponding to the first clause of S.

We can apply the same process for the second clause of S, namely (x2∨x3). For this clause the
renaming is given by ū = (u2, u3) = (T, F ). Since all literals in this clause are already posited, we
can immediately write down w̄B = (wB1 ) = (F ) since F occurs in the second element of ū (t = 2).
Hence the solution (u∗, wB∗) = ((u2, u3), (wB1 )) = ((T, F ), (F )) is the solution obtained by applying
the prescription described above. We can check to see that this solution is indeed a model for the
Q̃C corresponding to the second clause of S.

Thus S is renamable Horn if and only if Q̃(S) is satisfiable.

2.4.4 Q-Horn Propositions

We have thus far encountered 3 special types of propositions:
1. Horn
2. Renamable Horn
3. Quadratic

all of which admit linear-time satisfiability algorithms. Boros et al. observed that all 3 types of
propositions may be unified into a new structure called Q-Horn propositions.

More formally, a Q-Horn proposition is a CNF formula S for which the following linear inequality
system is soluble: ∑

j : xj∈P (Ci)

αj +
∑

j : xj∈N(Ci)

(1− αj) ≤ 1, for each clause Ci

0 ≤ αj ≤ 1, for all j

where xj ∈ P (Ci) refers to the positive literals in Ci and N(Ci) the negative literals.
It is important to note that any fractional feasible solution can be rounded to a half-integer

solution such that all αj ∈ {0, 1
2 , 1}: if αj < 1

2 set it to 0, and if αj > 1
2 set it to 1. The resulting

half-integer solution will still be feasible. Why is this the case?
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We may re-write the original linear inequality system as follows (this is the same system with
some simple substitutions):∑

i : xi∈P (Ck)

αi +
∑

j : xj∈N(Ck)

αj ≤ 1, for each clause Ck

0 ≤ αi, αj ≤ 1, for all i, j

Clearly at most two of αi, αj ≥ 1
2 if their sums are to be less than 1. The α’s must therefore

fall under one of following three cases:
1. Two of the αi’s and αj ’s are 1

2 and all others are 0.
2. Exactly one of the α’s ≥ 1

2 and all others are less than 1
2 .

3. All α’s are strictly less than half.
In each of the three cases, the rounding gives a feasible αi, αj ∈ {0, 1

2 , 1} solution.
We can check if a given SAT problem is Q-Horn by solving the above linear inequality system

and obtaining a feasible fractional solution that can be rounded such that all αj ’s are either 0, 1
2 ,

or 1.
We now show that Horn, renamable Horn, and quadratic propositions are all Q-Horn:

1. Horn: Set all αj = 1. Since there is at most one positive literal in each Horn clause, the sum
of α’s for the positive literals is also at most one.

2. Renamable Horn: Set αj to 0 or 1, depending on the renaming. Set αj to 0 if xj is renamed,
and 1 otherwise. This works because a clause in a renamable Horn system containing m
positive literals (and the rest negative) must have at least m − 1 literals appearing posited
renamed. If exactly m− 1 literals appearing posited are renamed, then no literals appearing
negated can be renamed. But if m literals appearing posited are renamed, at most 1 literal
appearing negated can be renamed.

3. Quadratic: Set all αj = 1
2 since there are at most two literals in every clause.

We can rename all xj ’s where αj = 0 to their corresponding complements (x̄j) and set their
corresponding αj ’s to 1. Thus all Q-Horn formulas have a solution to the above linear inequality
system such that αj ∈ {1

2 , 1}. Now let X1 denote the variables that have αj = 1 and X2 denote
the remaining variables where αj = 1

2 .
We now move the variables (columns) in the incidence matrix around such that the columns of

the incidence matrix are partitioned into X1 (αj = 1) and X2 (αj = 1
2) columns. We may visualize

the clauses of the Q-Horn formula to have the following incidence structure now:(
H 0
Θ Q

)
where H stands for Horn, Θ for entries that are either 0 or -1, and Q for quadratic.

Once we have arranged the matrix in this structure, we run the following linear-time procedure
to obtain a solution:

1. Run Horn resolution on the H clauses.
2. Since Horn resolution fixes the values of the variables (if unsatisfiability hasn’t been detected),

simplify the remaining clauses using the least model of H.
3. Set all remaining X1 variables to F since we’re guaranteed at least one negated literal in every

row of H.
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What is left after this procedure is a quadratic formula whose satisfiability can also be solved
in linear time as shown in section 2.4.1.

2.4.5 Indexes for CNF Propositions

Based on the linear inequality description of Q-Horn propositions, let us consider an index for any
class of CNF propositions that reveals a measure of its difficulty. If S is any SAT instance, let z(S)
denote the minimum value attained by the linear program

min z

s.t
∑

j : xj∈P (Ci)

αj +
∑

j : xj∈N(Ci)

(1− αj) ≤ z, for all i

0 ≤ αj ≤ 1, for all j

The index z(S) sharply delineates the class of “easy” from “hard” satisfiability problems. Any
class of propositions in which each proposition S satisfies z(S) ≤ 1 + (c log n)/n, where n is the
number of atoms in S, admits polynomial time satisfiability algorithms for any c ∈ <.

We have shown that Q-Horn formulas S (which are a generalization of Horn, renamable Horn,
and quadratic formulas) are exactly those satisfying z(S) = 1. Thus for a large n, there is only
a narrow range of non-Q-Horn problems that admit polynomial-time algorithms. This is because
z(S) is allowed to increase from 1 only by a very small amount given by (log n)/n whose value
quickly diminishes with increasing n.

Furthermore, a class of propositions in which every proposition S satisfies z(S) ≤ 1 + n−β is
NP-complete for any β < 1. Since the maximum value of n−β is 1, all class of problems with
z(S) ≥ 2 are NP-complete.

It may thus seem that with Q-Horn formulas we may very well be close to the limit of special
structure in propositions that admit polynomial-time satisfiability algorithms. This, however, is
not the case as we will be shortly seeing.

2.5 Nested Clause Systems

Knuth introduced a new class of propositions called nested propositions and provided a linear-time
satisfiability algorithm.

Let X be the set of 2n possible literals totally ordered by < as follows:

x1 ≡ x̄1 < x2 ≡ x̄2 < . . . < xn ≡ x̄n
The total ordering therefore disregards the signs of the literals.
We now make the following definitions and observations to be used later:

1. Given the total ordering, the literals of a clause can be written in increasing order.
2. Clauses, other than unit clauses, have a least literal σ and a greatest literal τ such that σ 6= τ .

All variables strictly between σ and τ are interior to that clause.
3. A variable that has not yet appeared interior to any clause is called a partition variable and

belongs to the partition set. To start with, the partition set is the same as the set of variables
(X). As the algorithm processes a new clause, we update the partition set by removing all
variables that are interior to the new clause whether they appear in the new clause or not.
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4. A clause Ci straddles Cj if there exists two literals σ and τ in C1 and a literal α in Cj such
that σ < α < τ (note the strict inequalities). For example, using the natural total ordering,
i.e. x1 ≡ x̄1 < x2 ≡ x̄2 < x3 ≡ x̄3 and so on, the clause (x1 ∨ x̄3) straddles the unit clause
(x2) as well as the binary clause (x̄2 ∨ x̄3), but does not straddle (x̄3 ∨ x4).

5. Two clauses overlap if they straddle each other. An example of overlapping clauses would be
(x1 ∨ x3) and (x2 ∨ x4).

The definition of a nested system is as follows: A set of clauses is called nested if there is some
ordering of the variables such than no two clauses overlap.

2.5.1 Recognition of Nested Propositions

The problem of identifying nestedness in a set of clauses S boils down to planarity-testing of a
graph for which well-known linear-time algorithms already exist. We define a bipartite graph G
with vertices representing the atomic propositions X (x1, x2, . . . , xn) on one side and the clauses
c1, c2, . . . , cm on the other. For each literal xi in each clause cj , we draw an edge (xi, cj). We now
extend G by adding a new vertex y and edges (y, xi) for all i.

If G is planar, then S is nested since planarity implies the clauses do not overlap. The terms
“straddle” and “overlap” therefore have graphical interpretations when drawn as a graph, since
each literal in each clause is associated with an edge in the graph representation.

2.5.2 Maximum Satisfiability of Nested Clause Systems

Maximum satisfiability (MAX-SAT) subsumes satisfiability (SAT) and tries to maximize the num-
ber of clauses satisfied. A proposition is satisfiable if and only if MAX-SAT returns the number of
clauses in the system as its output.

MAX-SAT on nested propositions can be solved in linear time. To solve MAX-SAT on nested
clauses, we need a valid total order for which the clauses are nested. We assume that the clauses are
presented to us in a linear arrangement where each clause appears after every clause it straddles.
We also assume that the literals of each clause are presented to us in increasing order. This is called
a valid ordering of the clauses of S. A valid ordering is always possible since there will always be
at least one clause that does not straddle any other clause and at least one other clause that is not
straddled by any other clause.

A key observation is that once the clauses are presented to us in a valid ordering, then if a
variable appears interior to a clause C, then it cannot appear in any of the subsequent clauses. If
it did, then there would either be an overlap or the straddling order (each clause appearing after the
clause it straddles) would be violated. As a result, it is enough to remember information regarding
the partition variables since any future clause must have all its variables from this set.

The total number of literals in a set ofm nested clauses is therefore at most 2m+n (2 non-interior
literals per clause and each literal appearing interior to a clause at most once). For convenience,
we introduce two dummy variables x0 and xn+1 and a dummy clause Cm+1 = (x0 ∨ xn+1) [define
x0 to be the least element in X and xn+1 to be the greatest ].

The MAX-SAT algorithm for nested propositions processes the formula clause by clause (incre-
mentally).

As the algorithm processes each clause incrementally, it can either encounter unit and binary
clauses, or it can encounter larger clauses that contain interior variables. In the case of unit or
binary clauses, we can just set each variable to first T and then F and pick the assignment that

20



satisfies the most number of clauses. On the other hand, if the clause has interior variables, these
variables cannot appear in subsequent clauses since they will be removed from the partition set.
This means that a truth assignment to these interior variables will only affect processed clauses.
Since this is a MAX-SAT problem, we choose truth-assignments for these variables such that as
many processed clauses as possible are satisfied. However, we do not need to check all 2i truth
combinations if there are i interior variables. This is because if z1, z2, z3 are successive variables in
the current clause, then z1 and z3 could not have occurred simultaneously in any of the previous
clauses because if it did, z2 would have been removed from the partition set (since it is an interior
variable) and could not appear in the current clause. This means that assigning T or F to z1 should
not affect any of the clauses in which z3 occurs although it might affect clauses in which z2 occur.
Thus variables in the current partition interact only with their immediate neighbours and we only
have to perform i+ 1 checks as opposed to 2i checks.

The complexity of the MAX-SAT algorithm is O(m+n) since we have at most 2m+n literals,
ignoring the two extra dummy literals we added. The algorithm is therefore linear-time in the sum
of the number of clauses and atomic propositions.

The MAX-SAT algorithm for nested propositions is outlined below in pseudo code:

1 for i in range(0, n):
2 next[x[i]] = x[i+1]
3 for i in range(0, n):
4 for s in range(0, 1):
5 for l in range(0, 1):
6 maxsat[x[i], s, l] = 0
7 for i in range(1, m+1):
8 least = abs(lit[start[i]])
9 greatest = abs(lit[start[i+1]] - 1)

10 if (least == greatest) || (next[least] == greatest):
11 # update the maxsat array directly
12 else:
13 # compute the new maxsat value and store in newmax
14 next[least] = greatest
15 for s in range(0, 1):
16 for t in range(0, 1):
17 maxsat[least, s, t] = newmax[s, t]

21



3 Summary of Findings

1. We show that the two questions of whether a formula is satisfiable and whether one formula
implies another are one and the same. Each form may be converted to the other and therefore
both problems are equally hard.

2. In Section 2.2.1 we explain why the proposed optimization model for the inference problem
of the form (S1 → S2) works. We begin by assuming that S1 is CNF and S2 is given by single
clause C. We then extend the argument to the case where S2 is given by more than just a
clause, but is still CNF.

3. For satisfiability problems on Horn systems, we may be able to speed up Horn resolution a
little by skipping resolution on a unit positive clause by making the substitution xj = x̄j
since Horn resolution only resolves unit positive clauses. We must of course remember to
switch the corresponding value for the propositional atom for each of the modified formula’s
models. However this substitution is permissible only if every other clause containing x̄j does
not already contain a positive clause so as to remain Horn after the substitution.

4 List of Theorems

1. Theorem Any formula in propositional logic is equivalent to a CNF formula whose length is
linearly related to the length of the original formula.

2. Theorem A proposition S has a unit refutation (unsatisfiability of S proved by unit resolu-
tion) if and only if the linear programming relaxation of S is infeasible.

3. Theorem A satisfiable Horn proposition has a unique minimal model. A unique minimal
model for a satisfiable proposition S is achieved by:

(i) Setting all atoms to T only for those atoms that must be true in all models of S.
(ii) Setting everything else to F.

4. Theorem The set of models of a proposition is closed under the “∧” operation if and only if
the proposition is H-equivalent.

5. Theorem A convex polyhedron defined by a system of linear inequalities

P = { x | Ax ≥ b, x ≥ 0}

has an integral least element if the following conditions are met:
(a) b must be integral
(b) b must be such that P is non-empty
(c) each row of A must have at most one positive component
(d) all positive components of A must be equal to 1

6. Theorem Let Ax ≥ a represent an unsatisfiable set of Horn clauses. Then if (u, v) is any
optimal extreme point solution of the dual, there is an integer N and a refutation proof of
unsatisfiability such that Nui is the number of times that each clause i is used to obtain the
empty clause in the proof.
Theorem S is renamable Horn if and only if Q̃(S) is satisfiable. If Q̃(S) is satisfiable by
(u∗, w∗) then a Horn renaming of S is given by the rule for all i that u∗i = 1 means that xi is
to be complemented and u∗i = 0 means nothing is to be done with xi.
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